SolvingRupert's Problem Algorithmically

Jakob Steininger and Sergey Yurkevich

Rupert's Property

A convex polyhedron $\mathbf{P} \subset \mathbb{R}^{3}$ is Rupert (or has Rupert's property) if a hole (with the shape of a straight tunnel) can be cut into it such that a copy of \mathbf{P} can be moved through this hole.

Rupert's problem is the task to decide whether a given polyhedron has Rupert's property.

Open Questions

- Are all convex polyhedra Rupert? $[1,4]$
- Optimal solutions to Rupert's problem?
- Connection to dual solids?

Equivalent reformulation

A polyhedron \mathbf{P} is Rupert if and only if there exist two projections $M_{\theta_{1}, \varphi_{1}}, M_{\theta_{2}, \varphi_{2}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, a rotation $R_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and a translation map $T_{x, y}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that the polygon $\mathcal{P}=\left(T_{x, y} \circ R_{\alpha} \circ M_{\theta_{1}, \varphi_{1}}\right)(\mathbf{P})$ lies strictly inside the polygon $\mathcal{Q}=M_{\theta_{2}, \varphi_{2}}(\mathbf{P})$.

Probabilistic algorithm

Input: A polyhedron $\mathbf{P}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \mathbb{R}^{3}$
Output: A solution $\left(x, y, \alpha, \theta_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}\right) \in \mathbb{R}^{7}$ if \mathbf{P} is Rupert.
(1) For each $i \in\{1,2\}$, draw θ_{i} uniformly in $[0,2 \pi)$, and $\widetilde{\varphi}_{i}$ uniformly in $[-1,1]$. Set $\varphi_{i}:=\arccos \left(\widetilde{\varphi}_{i}\right)$.
(2) Construct the two 3×2 matrices A and B corresponding to the linear maps $M_{\theta_{1}, \varphi_{1}}$ and $M_{\theta_{2}, \varphi_{2}}$. Compute the two projections of \mathbf{P} given by $\mathcal{P}^{\prime}:=A \cdot \mathbf{P}$ and $\mathcal{Q}^{\prime}:=B \cdot \mathbf{P}$.
(3) Find the vertices on the convex hulls of \mathcal{P}^{\prime} and \mathcal{Q}^{\prime}, and denote them by \mathcal{P} and \mathcal{Q}.
(4) Decide whether \mathcal{P} fits inside \mathcal{Q}, e.g. by using the algorithm from [2].
(5) If Step (4) yields a solution (x, y, α), return $\left(x, y, \alpha, \theta_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}\right)$. Otherwise, repeat Steps (1)-(5).

Deterministic algorithm

Input: A polyhedron $\mathbf{P}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \mathbb{Z}^{3}$.
Output: A solution $\left(x, y, \alpha, \theta_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}\right) \in \mathbb{R}^{7}$ if \mathbf{P} is Rupert.
For every possible silhouette $s=\left(s_{1}, \ldots, s_{k}\right)$ of \mathbf{P} do:
(1) Define the system of inequalities $\operatorname{det}\left(Q_{s_{i+1}}-P_{j}, Q_{s_{i}}-P_{j}\right)>0$ for $j=1, \ldots, n$ and $i=1, \ldots, k$, where $Q_{i}:=M_{\theta_{2}, \varphi_{2}}\left(\mathbf{P}_{s_{i}}\right)$ and $P_{j}:=$ $\left(T_{x, y} \circ R_{\alpha} \circ M_{\theta_{1}, \varphi_{1}}\right)\left(\mathbf{P}_{j}\right)$ as well as $Q_{j+1}:=Q_{1}$
(2) Substitute the variables $\alpha, \theta_{i}, \varphi_{i}$ by a, b_{i}, c_{i}, using the parametrization of the circle. This yields a system of rational inequalities.
(3) Multiply each inequality by $\left(\left(1+a^{2}\right)\left(1+b_{1}^{2}\right)\left(1+b_{2}^{2}\right)\left(1+c_{1}^{2}\right)\left(1+c_{2}^{2}\right)\right)^{2}$, to get a system of polynomial inequalities with integer coefficients.
(4) Search for a solution, e.g. by using the algorithm described in [3]
(5) If (4) yielded a solution: Transform back to the original variables $\left(x, y, \alpha, \theta_{1}, \theta_{2}, \varphi_{1}, \varphi_{2}\right)$ and return the solution.

Theorem I

- All 5 Platonic solids are Rupert [4].
- At least 10 of 13 Archimedean solids have Rupert's property [1, 5, 6].
- At least 9 of 13 Catalan solids have Rupert's property [6].
- At least 82 of 92 Johnson solids have Rupert's property [6].

Conjecture
The rhombicosidodecahedron is not Rupert [6].

Remains to prove emptiness of 50 semialgebraic sets each defined by 3600 polynomial inequalities in 6 variables of total degree 22 .

Solutions for selected solids

New and verified solutions of a Catalan solid, a Johnson solid, and an Archimedean solid [6]:

Deltoidal icositetrahedron

Elongated square gyrobicupola

Truncated icosidodecahedron

Theorem II

Rupert's problem is algorithmically decidable if \mathbf{P} has algebraic coordinates. If \mathbf{P} has rational coordinates, bounded in absolute value by m, then the running time of this algorithm is in $(\log (m) \cdot n)^{O(1)} \cdot n![6]$.

References

[1] Y. Chai, L. Yuan, and T. Zamfirescu. Rupert property of Archimedean solids. Amer. Math. Monthly, 125(6):497-504, 2018.
[2] B. Chazelle. The polygon containment problem. Advances in Computing Research I, pages 1-33, 1983.
[3] D. Y. Grigor'ev and N. Vorobjov. Solving systems of polynomial inequalities in subexponential time. Journal of Symbolic Computation, 5(1):37-64, 1988.
[4] R. P. Jerrard, J. E. Wetzel, and L. Yuan. Platonic passages. Math. Mag., 90(2):87-98, 2017.
[5] G. Lavau. The truncated tetrahedron is Rupert. Amer. Math. Monthly, 126(10):929 932, 2019.
[6] J. Steininger and S. Yurkevich. An algorithmic approach to Rupert's problem, 2021. Preprint, https://arxiv.org/abs/2112.13754.

